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Motivation

In general, the main problems of coding theory are

Determining the maximum size of the code given the distance and the
length

Constructing codes with maximum error-correction and small
redundancy

Constructing codes with efficient encoding and decoding algorithms

Why permutation codes?

Powerline communications

Flash memories
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Groups and fields

Definition 1.1.2.

Let q = pk , where p is prime. The affine general linear group of degree
n over Fq is the group of affine linear transformations, which are maps
γA,b : Fn

q → Fn
q such that γA,b(u) = Au + b, for A ∈ GLn(Fq), b ∈ Fn

q.

We denote it as AGLn(Fq).

The affine general linear group can also be defined as the semidirect
product Fn

q o GLn(Fq), with composition as the group operation and
(C , d) ◦ (A, b) = (CA,Cb + d).
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Groups and fields

Definition 1.1.3.

Let q = pk , where p is prime. The projective general linear group of
degree n over Fq is defined to be the quotient of the general linear group
by its center, the scalar matrices. In other words,
PGLn(Fq) = GLn(Fq)/Z (GLn(Fq)), where Z (GLn(Fq)) = {λIn | λ ∈ F∗

q}.

While the affine general linear group acts on Fn
q, the projective general

linear group acts on the projective space Pn−1
q .
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Groups and fields

Definition 1.1.4.

Let q = pk , where p is prime. The projective space of dimension n − 1
over Fq is defined as Pn−1

q = (Fn
q \ {0})/ ∼, where ∼ is defined by

(x0, · · · , xn−1) ∼ (y0, · · · , yn−1) if there exists λ ∈ F∗
q such that

(x0, · · · , xn−1) = λ(y0, · · · , yn−1).

Here, we can define the action of PGLn(Fq) on Pn−1
q to be

A : Pn−1
q → Pn−1

q

u 7→ Au

where A ∈ PGLn(Fq).

Yeung Kar Wing FYP Presentation 24 April 2018 8 / 43



Groups and fields

Definition 1.1.4.

Let q = pk , where p is prime. The projective space of dimension n − 1
over Fq is defined as Pn−1

q = (Fn
q \ {0})/ ∼, where ∼ is defined by

(x0, · · · , xn−1) ∼ (y0, · · · , yn−1) if there exists λ ∈ F∗
q such that

(x0, · · · , xn−1) = λ(y0, · · · , yn−1).

Here, we can define the action of PGLn(Fq) on Pn−1
q to be

A : Pn−1
q → Pn−1

q

u 7→ Au

where A ∈ PGLn(Fq).

Yeung Kar Wing FYP Presentation 24 April 2018 8 / 43



Groups and fields

Definition 1.1.5.

Let F be a field with characteristic p. The Frobenius automorphism on
F is the map φ : F → F such that x is mapped to xp for all x ∈ F .

Definition 1.1.6.

Let q = pk , where p is prime. The Galois group of Fq/Fp is a cyclic
group of order k generated by the Frobenius automorphism φ(x) = xp,
and it is denoted by Gal(Fq/Fp).
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Groups and fields

Definition 1.1.7.

Let q = pk , where p is prime. The affine semilinear group of degree n
over Fq is the group of affine semilinear transformations, which are maps
γA,σ,b : Fn

q → Fn
q such that γA,σ,b(u) = Aσ(u) + b, for

A ∈ GLn(Fq), σ ∈ Gal(Fq/Fp) and b ∈ Fn
q.

We denote this group as AΓLn(Fq).

In particular, we have

AΓL1(Fq) = {axpi + b | a, b ∈ Fq, a 6= 0, 0 ≤ i < n}
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Groups and fields

Definition 1.1.8.

Let q = pk , where p is prime. The projective semilinear group of degree
n over Fq is defined to be the semidirect product of the projective general
linear group by the Galois group.

In other words, PΓLn(Fq) = PGLn(Fq) o Gal(Fq/Fp).

Here, we have the natural action of PΓLn(Fq) on Pn−1
q to be

(A, σ) : Pn−1
q → Pn−1

q

u 7→ Aσ(u)

where A ∈ PΓLn(Fq), σ ∈ Gal(Fq/Fp).
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Groups and fields

We will use a different (but equivalent) definition for the special case
where the projective semilinear group has degree 2, and it is

PΓL2(Fq) =

{
axp

i
+ b

cxpi + d

∣∣∣∣ a, b, c, d ∈ Fq, ad 6= bc, 0 ≤ i < n

}
.
This acts on the projective space of dimension 1, P1

q. However, instead of
thinking it as “equivalent classes in F2

q − {0}” as we have previously
defined, we can think of it as “the affine space Fq with its points at
infinity”. This is the set Fq ∪ {∞}.

Yeung Kar Wing FYP Presentation 24 April 2018 12 / 43



Outline

1 Introduction
Motivation
Groups and fields
Coding theory
Elementary results

2 Review of known constructions
Mutually orthogonal latin squares
AΓL1(Fn) and PΓL2(Fn)

3 New constructions
Ring of integers modulo n
AGLn(Fq) and PGLn(Fq)

4 Conclusion

Yeung Kar Wing FYP Presentation 24 April 2018 13 / 43



Coding theory

Definition 1.2.5.

A permutation code C is a subset of Sn, and each element in C is called
a codeword. The length of each codeword is n. If for every two
codewords u, v ∈ C , the distance between u and v is at least d , we say
that d is the distance of C . The size of the code C is usually denoted as
M, and it is common to write the code C as a (n,M, d)-code.

Definition 1.2.6.

Given the parameters n and d , we denote the maximum size of such a
code as M(n, d).
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Coding theory

Definition 1.2.7.

The Hamming distance between two codewords σ, τ ∈ Sn is defined as
dH(σ, τ) = |{i ∈ {1, . . . , n} : σ(i) 6= τ(i)}|.

Note that we have

1 dH(σ, τ) = dH(e, στ−1)

2 dH(σ, τ) = dH(γσ, γτ), for γ ∈ Sn
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Coding theory

Definition 1.2.9.

Let C be an (n,M, d)-code. Then a permutation array of size M × n is
an array whose rows are the image of σ on (1, 2, . . . , n), for all σ in C . We
denote the permutation array as PA(n, d), and we say that it has size M.

Example 1.2.10.

The Klein-4 subgroup G = {(), (12)(34), (13)(24), (14)(23)} of S4 is a
(4, 4, 4)-code. The permutation array for this code is

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1


and we call it a PA(4, 4) of size 4.
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Elementary results

Proposition 1.3.1.

Let M(n, d) be the maximum size of a permutation code with length n
and Hamming distance d . Then the following statements are true:

(i) M(n, 2) = n!

(ii) M(n, 3) = n!
2

(iii) M(n, n) = n

(iv) M(n, d) ≥ M(n − 1, d),M(n, d + 1)

(v) M(n, d) ≤ nM(n − 1, d)

(vi) M(n, d) ≤ n!
(d−1)!
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Elementary results
Here, D(n, k) is the set of all permutations in Sn which are distance k
from the identity.

Proposition 1.3.4 (GV bound).

M(n, d) ≥ n!

V (n, d − 1)
=

n!∑d−1
k=0 |D(n, k)|

Proposition 1.3.5 (Sphere-packing upper bound).

M(n, d) ≤ n!∑b d−1
2 c

k=0 |D(n, k)|
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Elementary results

Definition 1.3.6.

A permutation group G ≤ Sn is transitive if for every x , y ∈ {1, . . . , n},
there exists a σ ∈ G such that σ(x) = y .

In other words, if G is transitive, there will always be an element in G that
will take us from x to y for any x , y in the set G acts on.

Definition 1.3.7.

Let x , y be k-tuples consisting of non-repeating elements from {1, . . . , n},
that is x = (x1, . . . , xk) and y = (y1, . . . , yk), where xi , yi ∈ {1, . . . , n} for
all 1 ≤ i ≤ k and xi 6= xj , yi 6= yj for i 6= j . A permutation group G ≤ Sn
is sharply k-transitive if for every such x , y of size k , there exists a
unique σ ∈ G such that σ(x) = y .
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Elementary results

Proposition 1.3.9.

If G is a sharply k-transitive group acting on a set of size n, we then have
M(n, n − k + 1) = n!

(n−k)! .

Sketch of proof.

1 From uniqueness, g(1, . . . , k) 6= h(1, . . . , k)

2 g(1, . . . , n) and h(1, . . . , n) has distance at least n − k + 1

3 M(n, n − k + 1) ≥ |G | = n!
(n−k)!

4 M(n, n − k + 1) ≤ n!
(n−k)! from Proposition 1.3.1 (vi)

Example 1.3.10.

Consider the Mathieu groups M11 and M12. It is well-known that they are
sharply 4- and 5-transitive respectively. This gives us
M(11, 8) = 11 · 10 · 9 · 8 and M(12, 8) = 12 · 11 · 10 · 9 · 8.
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Elementary results

Definition 1.3.11.

Let q be a prime power. We say that f ∈ Fq[x ] is a permutation
polynomial if the function

f : Fq → Fq

c 7→ f (c)

acts as a permutation on Fq.

Let Nd(q) denote the number of permutation polynomials over Fq of a
given degree d , where 1 ≤ d ≤ q − 2. We then have the following result.

Proposition 1.3.12.

Let q be a prime power. Then M(q, d) ≥
∑q−d

i=1 Ni (q).
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Mutually orthogonal latin squares

Colbourn et al. have shown that we can construct permutation codes
using mutually orthogonal latin squares, which we will review in the
following slides.

Definition 2.1.1.

Let S be a set of n symbols. A latin square of order n is an n × n matrix
such that each symbol of S occurs exactly once in each row and each
column.

Definition 2.1.2.

Let L1 and L2 be latin squares of the same order on the sets S1 and S2
respectively. Then L1 and L2 are said to be orthogonal if each tuple (i , j)
where i ∈ S1, j ∈ S2 occurs exactly once when we overlap L1 and L2.
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Mutually orthogonal latin squares

Definition 2.1.3.

A collection of k n × n latin squares is said to be mutually orthogonal if
every pair of latin squares in the collection is orthogonal, and we denote
this collection as MOLS(n).

Example 2.1.4.

This is a set of 2 mutually orthogonal latin squares of order 3. If we overlap
these 2 latin squares, we get all possible tuples (i , j) where i , j ∈ {1, 2, 3}.

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1

→
(1,1) (2,2) (3,3)

(2,3) (3,1) (1,2)

(3,2) (1,3) (2,1)
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Mutually orthogonal latin squares

Theorem 2.1.7.

If there exists s mutually orthogonal latin squares of order n, then there
exists a (n, n − 1)-code of size sn.

Corollary 2.1.8.

For n prime power, M(n, n − 1) = n(n − 1).

Proof.

Since n is a prime power, there exists a set of n − 1 MOLS of order n. We
can then apply Theorem 2.1.7 to get M(n, n − 1) ≥ n(n − 1).
Furthermore, from Proposition 1.3.1(vi), we also obtain
M(n, n − 1) ≤ n(n − 1). The result then follows.
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AΓL1(Fn) and PΓL2(Fn)

Bereg et al. have shown that we are able to construct permutation codes
via the affine and projective semilinear groups.

Theorem 2.2.1.

There exists a (n, kn(n − 1), n − pk
∗
)-code arising from AΓL1(Fn), where

k∗ is the largest proper factor of k , and n = pk .

We know that

|AΓL1(Fn)| = kn(n − 1) and

AΓL1(Fn) acts on Fn which is of size n.

To show that the distance is n − pk
∗
, we make use of the fact that

AGL1(Fn) is normal in AΓL1(Fn), and find the distance of the cosets.
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AΓL1(Fn) and PΓL2(Fn)

Theorem 2.2.2.

There exists a (n + 1, kn(n + 1)(n − 1), n − pk
∗
)-code arising from

PΓL2(Fn), where k∗ is the largest proper factor of k, and n = pk .

We know that

|Fn ∪ {∞}| = n + 1 and

|PΓL2(Fn)| = kn(n + 1)(n − 1).

We use a similar technique to show that the distance is n − pk
∗
.
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AΓL1(Fn) and PΓL2(Fn)

Corollary 2.2.8.

For n = 2k , k prime, we have M(n, n − 2) ≥ kn(n − 1).

Corollary 2.2.9.

For n = 2k , k prime, we have M(n + 1, n − 2) ≥ kn(n + 1)(n − 1).
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Ring of integers modulo n

Definition 3.1.1.

Let G be an abelian group, with the group operation denoted as addition.
For A, B ⊆ G , we define the sumset of A and B to be
A + B := {a + b | a ∈ A, b ∈ B}.

Remark

From this definition, we have A− A = {a− b | a, b ∈ A} = A + (−A).

Remark

It is clear that |A + B| ≥ max{|A|, |B|}.
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n is a prime power

Suppose n = pr , where p is prime and r ≥ 1 is an integer.

Lemma 3.1.1.

If I ⊆ Zn and |I | ≥ n − φ(n) + 1, then ∃α, β ∈ I , α 6= β such that
α− β ∈ Z∗

n, where φ(n) is the Euler totient function.

Theorem 3.1.2.

For a prime power n ≥ 2, there exists a permutation code
(n, φ(n) · n, φ(n)).

We have the group action of A = {(a, b) | a ∈ Z∗
n, b ∈ Zn} on Zn to be

σα = aα + b, where α ∈ Zn, σ ∈ A. We then make use of Lemma 3.1.1
to show that d(σ1, σ2) ≥ φ(n) for all σ1, σ2 ∈ A.
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n is a prime power

Note that for n that is prime, (n, φ(n) · n, φ(n)) is an optimal code, that is
the maximal size has been achieved for the given length and distance.

Recall that from the construction via MOLS(n) we obtained Corollary
2.2.9, which said that M(n, n − 1) = n(n − 1) for n a prime power. Hence
this construction gives the same result, for n that is prime.
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n is not a prime power

Lemma 3.1.3.

If (n − φ(n)) | n, then n is a prime power.

Lemma 3.1.4.

If n ≥ 6 is not a prime power, then for any I ⊆ Zn with |I | ≥ n − φ(n), we
have |I − I | ≥ n − φ(n) + 1.

Theorem 3.1.5.

If n ≥ 6 is not a prime power, there exists a (n, φ(n) · n, φ(n) + 1)
permutation code.
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AGLn(Fq) and PGLn(Fq)

We can also construct permutation codes using the affine and projective
general linear group. That can be achieved with the help of the following
lemma.

Lemma 3.2.1.

Suppose a group G acts on a finite set Ω, where |Ω| = n. Let
Ωg := {ω ∈ Ω | gω = ω}. If |Ωg | ≤ t for all g ∈ G , g 6= 1, then there
exists a (n, |G |, n − t)-code.
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AGLn(Fq)

Recall that the affine general linear group, AGLn(Fq) = Fn
q o GLn(Fq),

acts on Fq in the following manner:

(A, b) : Fn
q → Fn

q

u 7→ Au + b

where (A, b) ∈ AGLn(Fq).

Theorem 3.2.1.

Let n ≥ 1 be an integer and q be a prime power. Then there exists a(
qn, qn

∏n−1
i=0 (qn − qi ), qn − qn−1

)
-code.
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PGLn(Fq)

Recall that we have defined the projective general linear group to be
PGLn(Fq) = GLn(Fq)/Z (GLn(Fq)), where Z (GLn(Fq)) = {λIn | λ ∈ F∗

q}.
The projective general linear group acts on Pn−1

q in the following manner

A : Pn−1
q → Pn−1

q

u 7→ Au

where A ∈ PGLn(Fq).
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PGLn(Fq)

Lemma 3.2.2.

Suppose r = min{rank(λA− I ) | λ ∈ F∗
q} = rank(λ0A− I ) for some λ0,

where A, I ∈ GLn(Fq) and A 6= kI , for k ∈ F∗
q. Then ∀λ 6= λ0, we have

that rank(λA− I ) ≥ n − r .

Theorem 3.2.3.

Let n ≥ 1 be an integer and q be a prime power. Then there exists a(qn−1
q−1 ,

1
q−1

∏n−1
i=0 (qn − qi ), qn−1 − q + 2

)
-code.
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Conclusion

From the known constructions, for n prime power, we have these results:

M(n, n − 1) = n(n − 1) from MOLS(n),

M(n, n − pk
∗
) ≥ kn(n − 1) from AΓL1(Fn), and

M(n + 1, n − pk
∗
) ≥ k(n + 1)n(n − 1) from PΓL2(Fn).

From the new constructions, we have these results:

M(n, φ(n)) ≥ φ(n) · n for n prime power,

M(n, φ(n) + 1) ≥ φ(n) · n for n not prime power,

M(qn, qn − qn−1) ≥ qn
∏n−1

i=0 (qn − qi ), and

M(q
n−1
q−1 , q

n−1 − q + 2) ≥ 1
q−1

∏n−1
i=0 (qn − qi ) where q is prime power.
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Further study

For future research, one can explore the following areas:

other metrics such as the Kendall tau and Ulam metric,

constant composition codes, and

algebraic constructions where n is not a prime power.
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THE END
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