
Algebraic Constructions of

Permutation Codes

Yeung Kar Wing

Supervisor: Prof Xing Chaoping

Division of Mathematical Sciences

School of Physical and Mathematical Sciences

Nanyang Technological University

4 May 2018

This Final Year Project (FYP) thesis is submitted as part of the

honors requirements



ii



Abstract

Permutation codes have received increased interest in recent years, largely due to

its applications in powerline communications and flash memories. Finding good

constructions of codes is one of the motivations of coding theory. In this thesis,

we will look at constructions of permutation codes, in particular algebraic construc-

tions. We will review some elementary and well-known results in the field, and cover

some existing constructions as well as explore new ways of constructing permuta-

tion codes. Existing techniques mentioned in this thesis include mutually orthogonal

latin squares as well as the affine and projective semilinear group. In addition, the

ring of integers modulo n as well as the affine and projective general linear group

were also used to provide new constructions of permutation codes.
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Chapter 1

Introduction

Permutation codes have received increased interest in recent years, largely due to

its applications. One prominent use of permutation codes is in powerline communi-

cations, where the goal is to have the power output remain constant. This can be

achieved by having the frequencies correspond to symbols, and by using permutation

codes on those symbols, the power remains constant regardless of any codeword that

is transmitted [5]. This avoids the problem of having large fluctuations in voltage

that would occur with classical binary codes.

Another significant application of permutation codes can also be found in rank

modulation, which is a data representation scheme used in non-volatile storage de-

vices such as flash memories [11], [10]. In this scheme, memory cells are given ranks

according to their charge levels. The ranking of the cells can be changed by in-

creasing the charge of the cells whose rank we want to increase. As single-cell erase

operations are expensive, this rank modulation scheme improves data reliability and

writing speed [8].

In this thesis, we will start by stating some definitions from groups and fields as

well as coding theory, then some elementary results regarding permutation codes,

followed by a review of some interesting constructions that have been published, and

lastly we will share some of the constructions we have explored.
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1.1 Groups and fields

As we will be exploring mostly algebraic constructions in this thesis, we would like

to provide the relevant definitions for the sake of completeness. In particular, we

will see the affine and projective semilinear groups in Section 2.2, and the affine and

projective general linear groups in Section 3.2.

Definition 1.1.1. The general linear group of degree n over a field F is the

group of n× n invertible matrices with entries from F and matrix multiplication as

the group operation. We denote it as GLn(F ).

In this thesis we will only consider the field Fq where q is a prime power, although

in general the above definition applies to any field, such as R or C.

Definition 1.1.2. Let q = pk, where p is prime. The affine general linear group

of degree n over Fq is the group of affine linear transformations, which are maps

γA,b : Fnq → Fnq such that γA,b(u) = Au + b, for A ∈ GLn(Fq), b ∈ Fnq . We denote it

as AGLn(Fq).

The above definition follows the one in Galois Theory by David Cox [4]. However,

the affine general linear group can also be defined as the semidirect product Fnq o

GLn(Fq), with composition as the group operation and (C, d)◦(A, b) = (CA,Cb+d).

It is easy to check that this is indeed a semidirect product, as

(i) Fnq ' {γIn,b | b ∈ Fnq } is normal in AGLn(Fq); and

(ii) GLn(Fq) ' {γA,0 | A ∈ GLn(Fq)} is a subgroup of AGLn(Fq).

Alternatively, we can also think of it as a group action, where AGLn(Fq) acts on

the set Fnq . Again, one can also verify that this is indeed a “legal” group action by

checking that it satisfies the conditions of a group action.

Definition 1.1.3. Let q = pk, where p is prime. The projective general linear

group of degree n over Fq is defined to be the quotient of the general linear group by

its center, the scalar matrices. In other words, PGLn(Fq) = GLn(Fq)/Z(GLn(Fq)),

where Z(GLn(Fq)) = {λIn | λ ∈ F∗q}.
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While the affine general linear group acts on Fnq , the projective general linear

group acts on the projective space Pn−1q . A definition for the projective space is

given below.

Definition 1.1.4. Let q = pk, where p is prime. The projective space of di-

mension n − 1 over Fq is defined as Pn−1q = (Fnq \ {0})/ ∼, where ∼ is defined by

(x0, · · · , xn−1) ∼ (y0, · · · , yn−1) if there exists λ ∈ F∗q such that (x0, · · · , xn−1) =

λ(y0, · · · , yn−1).

In other words, we can view the projective space of dimension n − 1 as the set

of n-dimensional lines through the origin.

Hence, we can define the action of PGLn(Fq) on Pn−1q to be

A : Pn−1q → Pn−1q

u 7→ Au

where A ∈ PGLn(Fq).

We next define the Frobenius automorphism and the Galois group, which are

“pre-requisites” for the affine general semilinear group and projective semilinear

group.

Definition 1.1.5. Let F be a field with characteristic p. The Frobenius auto-

morphism on F is the map φ : F → F such that x is mapped to xp for all x ∈ F .

Remark. Note that in the case of infinite fields, we have the Frobenius endomorphism

instead, as the map is a homomorphism instead of an isomorphism.

Definition 1.1.6. Let q = pk, where p is prime. The Galois group of Fq/Fp is a

cyclic group of order k generated by the Frobenius automorphism φ(x) = xp, and it

is denoted by Gal(Fq/Fp).

In general, if F ⊂ L is a finite extension, Gal(L/F ) = {σ : L → L | σ is an

automorphism and σ(a) = a ∀a ∈ F}. In the particular case where the field is

Fq/Fp, it turns out that Gal(Fq/Fp) = 〈φ〉, where φ is the Frobenius automorphism.

Definition 1.1.7. Let q = pk, where p is prime. The affine semilinear group of

degree n over Fq is the group of affine semilinear transformations, which are maps
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γA,σ,b : Fnq → Fnq such that γA,σ,b(u) = Aσ(u) + b, for A ∈ GLn(Fq), σ ∈ Gal(Fq/Fp)

and b ∈ Fnq . We denote this group as AΓLn(Fq).

In particular, we will be using AΓL1(Fq) for the construction in Section 2.2, and

that is the set

AΓL1(Fq) = {axpi + b | a, b ∈ Fq, a 6= 0, 0 ≤ i < n}

Definition 1.1.8. Let q = pk, where p is prime. The projective semilinear

group of degree n over Fq is defined to be the semidirect product of the projective

general linear group by the Galois group. In other words, PΓLn(Fq) = PGLn(Fq)o

Gal(Fq/Fp).

Here, we have the natural action of PΓLn(Fq) on Pn−1q to be

(A, σ) : Pn−1q → Pn−1q

u 7→ Aσ(u)

where A ∈ PΓLn(Fq), σ ∈ Gal(Fq/Fp).

In particular, we will be using PΓL2(Fq) for the construction in Section 2.2.

We will use a different (but equivalent) definition for the special case where the

projective semilinear group has degree 2, and it is

PΓL2(Fq) =

{
axp

i
+ b

cxpi + d

∣∣∣∣ a, b, c, d ∈ Fq, ad 6= bc, 0 ≤ i < n

}
.

This acts on the projective space of dimension 1, P1
q . However, instead of thinking

it as “equivalent classes in F2
q −{0}” as we have previously defined, to be consistent

with the above definition of PΓL2(Fq), we can think of it as “the affine space Fq

with its points at infinity”. This is the set Fq ∪ {∞}.

1.2 Coding theory

In this section, we will give a brief overview of classical binary codes, and then

provide the background necessary for permutation codes.

The motivation behind coding theory is that errors arise when we transmit data

over a noisy or unreliable channel. This means that we cannot transmit data “as
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it is”, as it is likely to be corrupted in some way at the receiving end. We would

need to have a way to encode our data before sending, so that the receiver is able

to detect the errors, and if possible, decode them correctly.

We first formalize the definition and some properties of the more commonly-

known binary codes.

Definition 1.2.1. A binary code C of length n is a subset of {0, 1}n, and every

element in C is called a codeword. We say that the code C has (Hamming)

distance d if every two codewords in C differ in at least d positions, and we write

the distance between two codewords as dH(x, y).

Definition 1.2.2. We say that C is l-error-detecting if for every codeword c ∈ C

and every x ∈ {0, 1}n, the statement “if dH(x, c) ≤ l, then l /∈ C” holds.

Definition 1.2.3. We say that C is l-error-correcting if for every codeword c ∈ C

and every x ∈ {0, 1}n, the statement “if dH(x, c) ≤ l, then we decode x to c” holds.

We apply the nearest neighbour rule when we say “we decode x to c”, which is

decoding from a given x to some c ∈ C such that dH(x, c) is minimized.

Example 1.2.4. C = {000, 011, 110, 101} is 1-error-detecting, and the distance is

2. However, C is not 1-error-correcting as 111 can be decoded to 011, 110 or 101.

From this, we can see that theoretically, we can simply append any number of

“error-checking” digits to the message we wish to transmit until we reach a desired

error-detecting or error-correcting capability. However, it should not be difficult

to see that this design is not efficient as we introduce a lot of redundancy in our

pursuit of error-correction. It turns out that this is one of the main problems of

coding theory, and they are:

(i) determining the maximum size of the code given the distance and the length,

(ii) constructing codes with maximum error-correction and small redundancy, and

(iii) constructing codes with efficient encoding and decoding algorithms.
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Algebraic constructions of binary (and in general, q-ary) codes are well-studied,

and algebraic techniques are used not only in constructions of codes, but decod-

ing algorithms as well [16]. Similar to binary codes, we can also apply algebraic

techniques to permutation codes as well.

We first provide a definition for permutation codes.

Definition 1.2.5. A permutation code C is a subset of Sn, and each element

in C is called a codeword. The length of each codeword is n. If for every two

codewords u, v ∈ C, the distance between u and v is at least d, we say that d is the

distance of C. The size of the code C is usually denoted as M , and it is common

to write the code C as a (n,M, d)-code.

Definition 1.2.6. Given the parameters n and d, we denote the maximum size

of such a code as M(n, d).

Much like binary codes, we are interested in investigating the distance of permu-

tation codes. Recent studies on permutation codes have explored different metrics,

such as the Chebyshev, Kendall tau, Cayley and Ulam metric due to their appli-

cations in flash memories [13], [2]. However in this thesis, we will focus on the

Hamming metric, and so whenever distance is mentioned, the Hamming distance

should be assumed. Although widely known, we provide a definition for the sake of

completeness.

Definition 1.2.7. The Hamming distance between two codewords σ, τ ∈ Sn is

defined as dH(σ, τ) = |{i ∈ {1, . . . , n} : σ(i) 6= τ(i)}|.

Remark. We have dH(σ, τ) = dH(e, στ−1). This is clear as σ(i) = τ(i) if and only if

στ−1(i) = i.

Remark. We also have dH(σ, τ) = dH(γσ, γτ), for γ ∈ Sn.

Example 1.2.8. C = {(), (123), (132)} ⊂ Sn is a (3, 3, 3)-code. We look at the

image of the elements of C, and they are {123, 231, 312}. We can easily see that the

distance is 3 as any two codewords do not collide in any position.

Permutation codes may sometimes be represented as an array as well. In partic-

ular, we will use the permutation array for the construction via mutually orthogonal

latin squares in Section 2.1. A definition for permutation arrays is given below.
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Definition 1.2.9. Let C be an (n,M, d)-code. Then a permutation array of size

M ×n is an array whose rows are the image of σ on (1, 2, . . . , n), for all σ in C. We

denote the permutation array as PA(n, d), and we say that it has size M .

Example 1.2.10. The Klein-4 subgroup G = {(), (12)(34), (13)(24), (14)(23)} of S4

is a (4, 4, 4)-code. The permutation array for this code is

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1


and we call it a PA(4, 4) of size 4.

As previously mentioned, one main problem in coding theory is to find the maxi-

mumM(n, d), given n and d as parameters, and this naturally applies to permutation

codes as well. By finding constructions of permutation codes, we not only are able

to explicitly construct codes with the given n,M and d parameters, the existence

of these codes also serve as a lower bound for M(n, d) as well. Lower and upper

bounds are also important in coding theory, and we will explore some of them in

the next section.

1.3 Elementary results

We now introduce some elementary results regarding permutation codes, which can

also be found in [9] and [5].

Proposition 1.3.1. Let M(n, d) be the maximum size of a permutation code with

length n and Hamming distance d. Then the following statements are true:

(i) M(n, 2) = n!

(ii) M(n, 3) = n!
2

(iii) M(n, n) = n

(iv) M(n, d) ≥M(n− 1, d),M(n, d+ 1)
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(v) M(n, d) ≤ nM(n− 1, d)

(vi) M(n, d) ≤ n!
(d−1)!

Proof. (i) This is clear as dH(σ, τ) ≥ 2 for all σ, τ ∈ Sn.

(ii) For all σ, τ ∈ An, στ−1 is even, so we must have dH(στ−1, e) ≥ 3, which then

gives us dH(σ, τ) ≥ 3. Hence M(n, 3) ≥ |An| = n!
2 . On the other hand, if

there exists a (n, 3)-code Γ such that |Γ| > n!
2 , there exists two elements in Γ

belonging to {σ, (12)σ} for some σ ∈ An by the pigeonhole principle, which

gives us a contradiction. Therefore M(n, 3) = n!
2 .

(iii) Cn, the cyclic group of order n, is a (n, n)-code⇒M(n, n) ≥ n. If there exists

a (n, n)-code Γ such that |Γ| > n, then {σ1, . . . , σn+1} ⊆ Γ. If we look at the

first position, 2 σi’s must overlap which gives us a contradiction. Therefore

M(n, n) = n.

(iv) This is clear. Take a M(n − 1, d) code and append a fixed symbol to each

codeword. Hence this code gives a lower bound for M(n, d). We can also take

a M(n, d + 1) code and replace the last digit of each codeword with a fixed

symbol. This also gives us a lower bound for M(n, d).

(v) Let Γ be a (n, d)-code with size M(n, d). Consider a subcode Γk of Γ such that

the first entry of each codeword is some fixed k ∈ {1, . . . , n}. We have n such

Γk’s and since |Γk| ≤ |M(n− 1, d)|, we have M(n, d) ≤ nM(n− 1, d).

(vi) This follows from (iii) and (v):

M(n, d) = nM(n− 1, d) = n(n− 1)M(n− 2, d) = · · · = n!

(d− 1)!

In addition to the elementary results given above, we also have the well-known

Gilbert-Varshamov lower bound and the sphere-packing upper bounds, which are

also mentioned in [9].

Definition 1.3.2. A derangement of order k is a permutation of a set of k

elements such that there are no fixed points.
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Definition 1.3.3. Let D(n, k) denote the set of all permutations in Sn which are

distance k from the identity, that is D(n, k) = {σ ∈ Sn | dH(σ, e) = k}.

We have |D(n.k)| =
(
n
k

)
Dk, where

Dk = k!
k∑
i=0

(−1)i

i!
, and D0 = 1 by convention.

Proposition 1.3.4 (GV bound).

M(n, d) ≥ n!

V (n, d− 1)
=

n!∑d−1
k=0 |D(n, k)|

Proof. The ball in Sn of radius r with center σ is the set of all permutations of

distance less than or equal to r from σ. We can see that the volume of this ball is∑d−1
k=0 |D(n, k)|, and hence the result follows.

Proposition 1.3.5 (Sphere-packing upper bound).

M(n, d) ≤ n!∑b d−1
2 c

k=0 |D(n, k)|

Proof. The denominator counts the number of balls B of radius r =
⌊
d−1
2

⌋
in Sn. If

C ⊆ Sn is a permutation code with size M(n, d), then the balls of radius r must be

disjoint, and so we have |C| · |B| ≤ n! and the result follows.

We also have a well-known result arising from sharply k-transitive groups. We

first provide definitions for transitivity and sharp k-transitivity.

Definition 1.3.6. A permutation group G ≤ Sn is transitive if for every x, y ∈

{1, . . . , n}, there exists a σ ∈ G such that σ(x) = y.

In other words, if G is transitive, there will always be an element in G that will

take us from x to y for any x, y in the set G acts on.

Definition 1.3.7. Let x, y be k-tuples consisting of non-repeating elements from

{1, . . . , n}, that is x = (x1, . . . , xk) and y = (y1, . . . , yk), where xi, yi ∈ {1, . . . , n}

for all 1 ≤ i ≤ k and xi 6= xj , yi 6= yj for i 6= j. A permutation group G ≤ Sn is

sharply k-transitive if for every such x, y of size k, there exists a unique σ ∈ G

such that σ(x) = y.
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Remark. Note that if σ ∈ G is not unique, we say that G is k-transitive instead of

sharply k-transitive.

Example 1.3.8. Sn is sharply n and (n − 1)-transitive. It is clear for any x =

(x1, . . . , xn) and y = (y1, . . . , yn) that there exists a σ ∈ Sn such that σ(x) = y. It

is also similar for Sn being sharply (n− 1)-transitive. We have σ((x1, . . . , xn−1)) =

(y1, . . . , xy−1), which gives us (n− 1)-transitivity, and the sharpness comes from the

fact that σ(xn) = yn is the unique extension of σ.

Proposition 1.3.9. If G is a sharply k-transitive group acting on a set of size n,

we then have M(n, n− k + 1) = n!
(n−k)! .

Proof. Suppose G is a sharply k-transitive group acting on a set Ω = {1, . . . , n}.

Consider g, h ∈ G. Then by the definition of sharp k-transitivity, g(1, . . . , k) 6=

h(1, . . . , k), and so g(1, . . . , n) and h(1, . . . , n) agree in at most k − 1 positions, or

in other words, the distance is at least n − k + 1. This gives us M(n, n − k + 1) ≥

|G| = n!
(n−k)! . Furthermore, from Proposition 1.3.1, we get M(n, n− k+ 1) ≤ n!

(n−k)! .

The desired result then follows.

From sharp k-transitivity, it gives us more than just a bound for M(n, d); it tells

us exactly what M(n, d) is. However, we do not know of many sharply k-transitive

groups, and thus this result cannot be extensively applied.

Example 1.3.10. The well-known Mathieu groups, M11 and M12, are sharply 4-

and 5-transitive respectively. Hence we have M(11, 8) = 11 ·10 ·9 ·8 and M(12, 8) =

12 · 11 · 10 · 9 · 8.

In addition to the results from sharply k-transitive groups, we also have results

from permutation polynomials.

Definition 1.3.11. Let q be a prime power. We say that f ∈ Fq[x] is a permuta-

tion polynomial if the function

f : Fq → Fq

c 7→ f(c)

acts as a permutation on Fq.



1.3. ELEMENTARY RESULTS 11

Remark. It is also equivalent to say that f is a bijection.

Let Nd(q) denote the number of permutation polynomials over Fq of a given

degree d, where 1 ≤ d ≤ q − 2. We then have the following result.

Proposition 1.3.12. Let q be a prime power. Then M(q, d) ≥
∑q−d

i=1 Ni(q).

Proof. Let f, g ∈ Fq[x] with degree at most q− d. Then clearly f(x)− g(x) = 0 has

at most q − d solutions, as Fq is a field. This means that f and g agree in at most

q − d positions, and so dH(f, g) ≥ d. The result then follows.

As one can tell, this depends on whether we know Nd(q) or not. It turns out

that this is not a trivial problem, and a more in-depth treatment can be found in

[5].
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Chapter 2

Review of known constructions

In this chapter, we will look at constructions of permutation codes that have been

published. Although there is increased interest in permutation codes in recent times,

not much has been done on algebraic constructions in particular. Some results

do arise from nice algebraic objects and properties, such as sharply k-transitive

groups and permutation polynomials, which we have shown in the previous chapter.

However, these results tend to be limited by the algebraic objects themselves. For

example, the number of permutation polynomials given a degree d is still an open

problem [12], [15], [7], and M11 and M12 are the only sharply k-transitive groups for

k > 3, apart from those arising from Sn and An.

On the other hand, other constructions of permutation codes are also available,

such as those that are probabilistic or computational, like the greedy algorithm or

clique search. While we do not cover those techniques here, they can be found in [5].

In this section, we will review a combinatorial approach, that is mutually orthogonal

latin squares, as well as a recent algebraic approach, which is based on the groups

AΓL1(Fn) and PΓL2(Fn).

2.1 Mutually orthogonal latin squares

In this section, we first provide some definitions, followed by some results leading

up to the main theorem. Some theorems may be weakened, as we wish to focus

solely on the construction of permutation codes, without examining any additional

13
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properties. For a complete treatment of mutually orthogonal latin squares and

permutation codes, one can refer to [3].

Definition 2.1.1. Let S be a set of n symbols. A latin square of order n is an

n× n matrix such that each symbol of S occurs exactly once in each row and each

column.

Definition 2.1.2. Let L1 and L2 be latin squares of the same order on the sets S1

and S2 respectively. Then L1 and L2 are said to be orthogonal if each tuple (i, j)

where i ∈ S1, j ∈ S2 occurs exactly once when we overlap L1 and L2.

Definition 2.1.3. A collection of k n × n latin squares is said to be mutually

orthogonal if every pair of latin squares in the collection is orthogonal, and we

denote this collection as MOLS(n).

Example 2.1.4. This is a set of 2 mutually orthogonal latin squares of order 3. If

we overlap these 2 latin squares, we get all possible tuples (i, j) where i, j ∈ {1, 2, 3}.

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1

→

(1,1) (2,2) (3,3)

(2,3) (3,1) (1,2)

(3,2) (1,3) (2,1)

To proceed with the proof of the main theorem, we will still need introduce a few

more notations. Recall that a PA(n, d) is a permutation array of size M × n where

its rows are the image of σ on (1, 2, . . . , n), for all σ in C and any two rows in the

PA(n, d) differ in at least d positions. We can also see it as the two rows agreeing in

at most n−d positions, and thus we denote a PA(n, d) of size M as B(n, n−d;M).

We will be using this notation in the main theorem of this section later.

Definition 2.1.5. A generalised Room square packing (GRSP) of size n and

index λ defined on a set S with cardinality v is an n× n array A such that

• every cell of A contains a subset of S;

• every symbol of S occurs once in each row and each column of A; and

• any two distinct symbols of S occur together in at most λ cells of A.
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We denote such a GRSP by T (n, λ; v).

Before we can prove the main result, we will need to prove that T (n, λ; v) and

B(n, λ; v) are “essentially” the same thing, but represented differently.

Theorem 2.1.6. A T (n, λ; v) exists if and only if a B(n, λ; v) exists.

Proof. We construct a n × n array as follows. The symbol k appears in the (i, j)

cell of T (n, λ; v) if and only if the (k, j) entry of B(n, λ; v) is i. Suppose we have a

B(n, λ; v). We show the ⇐ direction; it is clear the converse holds as well from the

construction and the proof of ⇐.

Note that we use B(k, j) to denote the element in B(n, λ; v) at the (k, j) cell and

T (i, j) for the element in T (n, λ; v) at the (i, j) cell.

Claim. Every element occurs exactly once in each row.

Proof of Claim. Suppose not, that is k is in T (i, j) and T (i, t) for some 1 ≤ k ≤ v,

1 ≤ i, j, t ≤ n and j 6= t. Then B(k, j) = i and B(k, t) = i, but each row of B(n, λ; v)

is a permutation. Hence the assumption is false.

Claim. Every element occurs exactly once in each column.

Proof of Claim. Fix j. Consider B(k, j) = i where 1 ≤ k ≤ v and 1 ≤ i ≤ n. From

the construction it is easy to see that each k ∈ {1, . . . , v} appears only once in each

column of T (n, λ; v).

Claim. Any two distinct symbols occur together in at most λ cells.

Proof of Claim. From the definition of B(n, λ; v), we know that any two permuta-

tions agree in at most λ positions. Suppose we take two permutations, or rather two

rows, k1 and k2, of B(n, λ; v). Then B(k1, j) = B(k2, j) = i for at most λ such i’s.

Hence k1 and k2 will coincide in at most λ such T (i, j)’s.

We have shown that the properties of T (n, λ; v) are satisfied, given that we

have a B(n, λ; v). It is clear that the converse holds as well, and thus the proof is

complete.

Now that we have the above result, we can then prove the main theorem. The

main theorem in the paper by Colbourn et al. [3] is a stronger version of what
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we have included here, as it also proves that the permutation array is s-separable.

We have chosen to omit s-separability in the proof below as it requires a few more

pre-requisite theorems and lemmas. While that would give us more depth into the

techniques of using MOLS to construct permutation codes, we did not want to trade

the breadth of this thesis for depth in the construction via mutually orthogonal latin

squares.

The modified result of the paper by Colbourn et al. is as follows.

Theorem 2.1.7. If there exists s mutually orthogonal latin squares of order n, then

there exists a (n, n− 1)-code of size sn.

Proof. Let L1, . . . , Ls be a collection of latin squares of order n, where Li is a latin

square on the set of symbols Si = {(i−1)n, . . . , in−1}. We then construct an n×n

square with the (i, j) cell containing the s symbols from the (i, j) cell in each of the

s latin squares. Note that

• each latin square uses n symbols so the total number of symbols is sn;

• each row and each column contains each symbol exactly once since the s

squares are latin; and

• each pair of elements occur at most once in a cell because the s squares are

mutually orthogonal.

Hence, this is a T (n, 1; sn). By Theorem 2.1.6, there exists a B(n, 1; sn). This then

gives us a PA(n, n− 1) of size sn.

This then naturally begs the question of, given n, whether we can construct a

set of MOLS of order n, and if so, what is the maximal size of this set. It turns out

that if n is a prime power, then we can construct a maximal set of MOLS of size

n− 1. This is a well-known fact regarding MOLS and a proof can be found in [14].

In fact, we can even say the following.

Corollary 2.1.8. For n prime power, M(n, n− 1) = n(n− 1).

Proof. Since n is a prime power, there exists a set of n − 1 MOLS of order n. We

can then apply Theorem 2.1.7 to get M(n, n − 1) ≥ n(n − 1). Furthermore, from
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Proposition 1.3.1(vi), we also obtain M(n, n − 1) ≤ n(n − 1). The result then

follows.

2.2 AΓL1(Fn) and PΓL2(Fn)

Although not much has been done on algebraic constructions of permutation codes

in the last decades, some progress has been made recently in 2017 by Bereg et al.

[1]. In this construction, the authors made use of the affine semilinear group of

dimension 1, AΓL1(Fn), as well as the projective semilinear group of dimension 2,

PΓL2(Fn), to construct permutation codes.

We first state the two main theorems, and then work our way towards the proof

of the theorems via a series of lemmas.

Theorem 2.2.1. There exists a (n, kn(n−1), n−pk∗)-code arising from AΓL1(Fn),

where k∗ is the largest proper factor of k, and n = pk.

Theorem 2.2.2. There exists a (n+ 1, kn(n+ 1)(n− 1), n− pk∗)-code arising from

PΓL2(Fn), where k∗ is the largest proper factor of k, and n = pk.

Before we prove the above two theorems, we will have to state some lemmas

required for the proof.

From here onwards, we also define dH(G) to be min{dH(g1, g2) | g1, g2 ∈ G}, and

dH(e,G) to be min{dH(e, g) | g ∈ G}.

Lemma 2.2.3. dH(G) = dH(e,G\{e}).

Proof. For g1, g2 ∈ G, we have dH(g1, g2) = dH(e, g−11 g2). Clearly g−11 g2 ∈ G and

g−11 g2 6= e as g1 6= g2.

Remark. The above lemma allows us to find the Hamming distance of G in O(|G|)

time instead of O(|G|2) time.

Lemma 2.2.4. Let G and H be subgroups of Sn such that G = ∪0≤i≤raiH, for some

r > 0, where a0 = e. Then dH(G) = min{dH(e,H\{e}), dH(a1, H), . . . , dH(ar, H)}.
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Proof. Note that if g ∈ aH, then g−1 ∈ Ha−1. This is because g = ah for some

h ∈ H, which gives us g−1 = (ah)−1 = h−1a−1 ∈ Ha−1. Hence we have

dH(G) = dH(∪0≤i≤raiH)

= min0≤i≤r{dH(e, aiH)}

= min0≤i≤r{dH(e,Ha−1i )}

= min{dH(e,H\{e}), dH(e,Ha−11 ), . . . dH(e,Ha−1r )}

= min{dH(e,H\{e}), dH(a1, H), . . . dH(ar, H)}

Lemma 2.2.5. For distinct polynomials f, g ∈ Fn[x], we have dH(f, g) = n− r(f −

g), where r(f − g) denotes the number of roots of f − g in Fn.

Proof. This is easy to see, as f(x) = g(x) if and only if f(x) − g(x) = 0, for

f, g ∈ Fn[x]. Note that the number of x ∈ Fn such that f(x) = g(x) is the number

of positions where f and g collide. This means that the Hamming distance between

f and g is n − r(f − g), as the number of x such that f(x) − g(x) = 0 is precisely

the number of roots of f − g.

Lemma 2.2.6. Let a, b ∈ Fn and a 6= 0. Then we have r(xp
i
+ax+ b) ≤ r(xpi −x).

Proof. Let f1(x) = xp
i
+ax+ b, f2(x) = xp

i
+ax and f3(x) = xp

i −x. To show that

r(f1) ≤ r(f3), we show these two inequalities: r(f1) ≤ r(f2) and r(f2) ≤ r(f3).

r(f1) ≤ r(f2): If f1 has no root in Fn, then r(f1) ≤ r(f2) is satisfied. Suppose

f1 has at least a root, and we call it y0. Then for any root y of f1, we have

f2(y − y0) = (y − y0)p
i

+ a(y − y0) (1)

= yp
i − yp

i

0 + a(y − y0)

= f1(y)− f1(y0)

= 0

This means that y− y0 is a root of f2. Since y → y− y0 is an injection, that is every

root of f1 corresponds to a root of f2, we have r(f1) ≤ r(f2).
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Note that (1) follows from a property of the Frobenius automorphism, which is

(x + y)p = xp + yp. This is true as we have p |
(
p
k

)
for 0 < k < p and so

(
p
k

)
= 0 in

Fn, which then gives us

(x+ y)p =

p∑
k=0

(
p

k

)
xkyp−k = xp + yp

r(f2) ≤ r(f3): To show r(f2) ≤ r(f3), we first show r(g2) ≤ r(g3), where

g2 =
f2
x

= xp
i−1 + a, g3 =

f3
x

= xp
i−1 − 1

Again, if g2 has no root in Fn, r(g2) ≤ r(g3) holds trivially. Hence we assume

that g2 has a root.

Suppose that a = 0. Then we have g2 = xp
i−1, which means that 0 is the

only root of g2, that is g2(0) = 0. We also have that 1 is a root of g3, and so

r(g2) = 1 ≤ r(g3).

Suppose that a 6= 0. Then 0 is not a root of g2. Since we know that there is at

least a nonzero root, we let it be z. We also let zi range over the roots of g2, and

we map zi → zi
z . We then show that zi

z is a root of g3:

g3(
zi
z

) = (
zi
z

)p
i−1 − 1

= (
zp

i−1
i

zpi−1
)− 1

=
−a
−a
− 1

= 0

Since the map is injective, it follows that a root of g2 gives us a root of g3, and

thus we have r(g2) ≤ r(g3)⇒ r(f2) ≤ r(f3).

We are now ready to prove Theorem 2.2.1 and Theorem 2.2.2.

Proof of Theorem 2.2.1. We know that |AΓL1(Fn)| = kn(n− 1) and AΓL1(Fn) acts

on Fn which is of size n. Hence what we really need to show is that the distance is

n− pk∗ .

Let H = AGL1(Fn) = {ax+b | a, b ∈ Fn, a 6= 0, 0 ≤ i < k} and G = AΓL1(Fn) =

{axpi + b | a, b ∈ Fn, a 6= 0, 0 ≤ i < k}.
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Note that:

(i) H is normal in G, as stated in Section 1.1, which then gives us G =
⋃k−1
i=0 x

piH.

(ii) As H is sharply 2-transitive, we can apply Proposition 1.3.9 to get dH(H) =

n− 1.

Given what we have above, we can then apply Lemma 2.2.4, which means that

we just need to show dH(xp
i
, H) ≥ n − pk∗ for all 1 ≤ i ≤ k. By Lemma 2.2.5, we

would need to show n − r(f − g) ≥ n − pk∗ ⇒ r(f − g) ≤ pk
∗
, where f = xp

i
and

g ∈ H, and so it suffices to show xp
i

+ ax+ b ≤ pk∗ , for a, b ∈ Fn, a 6= 0.

Fix i. Let S be the set of all roots of f(x) = xp
i − x. S forms a finite field and

is a subfield of Fn, hence |S| = pj for some j such that j | k. Now, if we consider

the extension of f(x) into its splitting field, the root set of this field forms Fpi . So

S is a subfield of Fpi and hence j | i. As j divides i and k, we have j = r(f(x)) ≤

pgcd(i,k) ≤ pk∗ . Hence, from Lemma 2.2.6, we have r(xp
i
+ ax+ b) ≤ pk∗ . The result

then follows.

For the sake of completeness, a definition for splitting field is provided below.

Definition 2.2.7. A splitting field of a polynomial p(x) over a field K is a field

extension L of K over which p factors into linear factors

p(x) =

deg(p)∏
i=1

(x− ai)

where for each i, x− ai ∈ L[x].

Corollary 2.2.8. For n = 2k, k prime, we have M(n, n− 2) ≥ kn(n− 1).

Remark. For example, we have M(2048, 2046) = 11 · 2048 · 2047 = 46114816.

We now move on to prove Thereom 2.2.2.

Proof of Theorem 2.2.2. Recall that we have

PΓL2(Fn) =

{
axp

i
+ b

cxpi + d

∣∣∣∣ a, b, c, d ∈ Fn, ad 6= bc, 0 ≤ i < n

}
,

which acts on Fn ∪ {∞}.
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For g ∈ G = PΓL2(Fn), we have the action defined as

g(x) =



axp
i
+b

cxpi+d
, if x ∈ Fn and cxp

i
+ d 6= 0

∞, if x ∈ Fn, cxp
i

+ d = 0 and axp
i

+ b 6= 0

a
c , if x =∞ and c 6= 0

∞, if x =∞, c = 0 and a 6= 0

where x ∈ Fn ∪ {∞}.

We thus have the stabilizer of ∞, that is G∞ = {g ∈ G | g(∞) = ∞}, to be

isomorphic to AΓL1(Fn). Note that this is true as for g(∞) = ∞, we must have

c = 0 and a 6= 0. We also cannot have g(x) = ∞ for x ∈ Fn, as g is a permutation

on Fn ∪ {∞}, which gives us d 6= 0 based on the definition of the function above.

Hence we have g = axp
i
+b
d = a

dx
pi + b

d ∈ AΓL1(Fn).

Since G∞ is isomrphic to AΓL1(Fn), we have dH(G∞) = n − pk∗ according to

Theorem 2.2.1. Note that we have PΓL2(Fn) =
⋃n−1
k=0 πkG∞, where πk ∈ PΓL2(Fn)

maps k to ∞, π0 = e. Then by Lemma 2.2.4, we have

dH(PΓL2(n)) = min{dH(e,G∞\{e}), dH(π1, G∞), . . . , dH(πn−1, G∞)}.

As we have dH(πi, G∞) = dH(G∞) ≥ n − pk
∗
, |Fn ∪ {∞}| = n + 1 and |G| =

kn(n+ 1)(n− 1), the result follows.

Corollary 2.2.9. For n = 2k, k prime, we have M(n+1, n−2) ≥ kn(n+1)(n−1).

Remark. For example, we have M(33, 30) = 5 · 33 · 32 · 31 = 163680.
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Chapter 3

New constructions

In this chapter, we look at two constructions of permutation codes. The first utilizes

sumsets and the ring of integers modulo n, while the second looks at the affine and

projective general linear group of degree n.

A point of interest with the construction via the ring of integers modulo n is that

we are able to come up with a construction that does not require n to be a prime

power. While the other algebraic constructions are meaningful and interesting in

their own way, they are limited to n being a prime power due to the nature of the

groups involved.

3.1 Ring of integers modulo n

In this section, we will first give a definition of sumsets, and then split the construc-

tion into two cases: when n is a prime power and otherwise, where n is the length

of the permutation code.

Definition 3.1.1. Let G be an abelian group, with the group operation denoted as

addition. For A, B ⊆ G, we define the sumset of A and B to be A+B := {a+ b |

a ∈ A, b ∈ B}.

Remark. From this definition, we have A−A = {a− b | a, b ∈ A} = A+ (−A).

Remark. It is clear that |A+B| ≥ max{|A|, |B|}.

23
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3.1.1 n is a prime power

We first consider the case where n is a prime power. Suppose n = pr, where p is

prime and r ≥ 1 is an integer. Recall that the Euler totient function φ(n) is the

number of integers less than n that is coprime to n.

Lemma 3.1.2. If I ⊆ Zn and |I| ≥ n − φ(n) + 1, then ∃α, β ∈ I, α 6= β such that

α− β ∈ Z∗n, where φ(n) is the Euler totient function.

Proof. We make use of what we know about sumsets. Note that we have |I − I| ≥

max{|I|, |I|} = |I| ≥ n − φ(n) + 1 and |Z∗n| = φ(n). As I,Z∗n ⊆ Zn, we have

|(I − I) ∪ Z∗n| ≤ n. We then have the following result:

|(I − I) ∩ Z∗n| = |I − I|+ |Z∗n| − |(I − I) ∪ Z∗n|

≥ (n− φ(n) + 1) + φ(n)− n

= 1

Hence, there exists at least an element in |(I − I)∩Z∗n|. In other words, we have

α, β ∈ I such that α− β ∈ Z∗n.

Theorem 3.1.3. For a prime power n ≥ 2, there exists a permutation code (n, φ(n)·

n, φ(n)).

Proof. Let n ≥ 2 be a positive integer and A = {(a, b) | a ∈ Z∗n, b ∈ Zn}. Recall

that the group action of A on Zn is defined by σα = aα+ b, where α ∈ Zn, σ ∈ A.

Note that each σ ∈ A gives a permutation on Zn.

Let σ1, σ2 ∈ A be two distinct permutations on Zn, and d(σ1, σ2) = w.

Claim. We claim that w ≥ φ(n).

Proof of Claim. Suppose w ≤ φ(n)−1. Since d(σ1, σ2) = w, there exists I ⊆ Zn such

that |I| = n−w and σ1(α) = σ2(α) for all α ∈ I. Since |I| = n−w ≥ n− φ(n) + 1,

by Lemma 3.1.2, we have α, β ∈ I, α 6= β such that α− β ∈ Z∗n.

Since σ1(α) = σ2(α) and σ1(β) = σ2(β), we have
σ1(α) = σ2(α)

σ1(β) = σ2(β)

⇒


a1α+ b1 = a2α+ b2

a1β + b1 = a2β + b2

⇒ a1(α− β) = a2(α− β)
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for some a1, a2 ∈ Z∗n and b1, b2 ∈ Zn. Since α − β 6= 0, we have a1 = a2 ⇒ b1 =

b2 ⇒ σ1 = σ2. Hence this is a contradiction and our claim is true.

As |A| = φ(n) ·n and d(σ1, σ2) ≥ φ(n), we then have a (n, φ(n) ·n, φ(n)) permu-

tation code.

Corollary 3.1.4. For n that is prime, (n, φ(n) · n, φ(n)) is an optimal code, that is

the maximal size has been achieved for the given length and distance.

Proof. Recall that from the construction via MOLS(n) we obtained Corollary 2.2.9,

which said that M(n, n − 1) = n(n − 1) for n a prime power. If we take n to be

prime, we can easily see that the result follows.

While this is not a new code, for n that is prime, we have shown an algebraic

way to achieve this code without having to use mutually orthogonal latin squares.

3.1.2 n is not a prime power

We next consider the case where n is not a prime power. We first show the lemma

stated below, and we will use the contrapositive in the main theorem of this subsec-

tion.

Lemma 3.1.5. If (n− φ(n)) | n, then n is a prime power.

Proof. Suppose n is not a prime power, that is n =
∏r
i=1 p

ei
i , where p1 < p2 < · · · <

pr are primes and ei ∈ Z+. Since (n− φ(n)) | n, there exists a k > 1 such that

n = k(n− φ(n))

⇒ n ≥ p1(n− φ(n)) (1)

⇒ (p1 − 1)n ≤ p1φ(n)

⇒ (p1 − 1)
r∏
i=1

peii ≤ p1
r∏
i=1

(pi − 1)p
(ei−1)
i

⇒ (p1 − 1)
r∏
i=1

pi ≤ p1
r∏
i=1

(pi − 1)

⇒
r∏
i=2

pi ≤
r∏
i=2

(pi − 1)
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Note that (1) follows from the fact that p1 is the smallest factor of n, and so k ≥

p1. As we can see, the last inequality is clearly not possible, and so n is a prime

power.

Lemma 3.1.6. If n ≥ 6 is not a prime power, then for any I ⊆ Zn with |I| ≥

n− φ(n), we have |I − I| ≥ n− φ(n) + 1.

Proof. If |I| ≥ n − φ(n) + 1, then we have |I − I| ≥ |I| = n − φ(n) + 1, so we are

done. Suppose that |I| = n− φ(n) and |I − I| = n− φ(n).

Let I = {a1, · · · , an−φ(n)}. Since |I − I| = n− φ(n), for all 1 ≤ i, j ≤ n− φ(n),

ai − a1, · · · , ai − an−φ(n) is a permutation of aj − a1, · · · , aj − an−φ(n). This implies

that

n−φ(n)∑
k=1

(ai − ak) =

n−φ(n)∑
k=1

(aj − ak)

⇒ (n− φ(n))ai −
n−φ(n)∑
k=1

ak = (n− φ(n))aj −
n−φ(n)∑
k=1

ak

⇒ (n− φ(n))(ai − aj) = 0

which means that (n− φ(n))x ≡ 0 mod n has at least n− φ(n) solutions, by fixing

ai and varying aj . However, (n− φ(n))x ≡ 0 mod n has gcd(n− φ(n), n) solutions,

which means that gcd(n− φ(n), n) ≥ n− φ(n).

On the other hand, since n is not a prime power, from Lemma 3.1.5, we have (n−

φ(n)) - n, which gives us gcd(n− φ(n), n) < n− φ(n). Hence this is a contradiction

and |I − I| = n− φ(n) is false, which means that |I − I| ≥ n− φ(n) + 1.

Theorem 3.1.7. If n ≥ 6 is not a prime power, there exists a (n, φ(n) ·n, φ(n)+1)

permutation code.

Proof. This proof is similar to the case where n is a prime power, so we will keep

it brief. Let n ≥ 2 be a positive integer and A = {(a, b) | a ∈ Z∗n, b ∈ Zn}. Let σ1,

σ2 ∈ A be two distinct permutations on Zn, and d(σ1, σ2) = w.

Claim. We claim that w ≥ φ(n) + 1.

Proof of Claim. Suppose w ≤ φ(n). Since d(σ1, σ2) = w, there exists I ⊆ Zn such

that |I| = n− w and σ1(α) = σ2(α) for all α ∈ I. Since |I| = n− w ≥ n− φ(n), we
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apply Lemma 3.1.6 to get |I − I| ≥ n− φ(n) + 1. This then gives us

|(I − I) ∩ Z∗n| = |I − I|+ |Z∗n| − |(I − I) ∪ Z∗n|

≥ (n− φ(n) + 1) + φ(n)− n

= 1,

that is there exists α, β ∈ I, α 6= β such that α− β ∈ Z∗n.

Since σ1(α) = σ2(α) and σ1(β) = σ2(β), we have


σ1(α) = σ2(α)

σ1(β) = σ2(β)

⇒


a1α+ b1 = a2α+ b2

a1β + b1 = a2β + b2

⇒ a1(α− β) = a2(α− β)

for some a1, a2 ∈ Z∗n and b1, b2 ∈ Zn. Since α − β 6= 0, we have a1 = a2 ⇒ b1 =

b2 ⇒ σ1 = σ2. Hence this is a contradiction and our claim is true.

As |A| = φ(n) · n and d(σ1, σ2) ≥ φ(n) + 1, we then have a (n, φ(n) · n, φ(n) + 1)

permutation code.

3.2 AGLn(Fq) and PGLn(Fq)

We can also construct permutation codes using the affine general linear group

AGLn(Fq) and the projective general linear group PGLn(Fq). That can be achieved

with the help of the following lemma, which is a general property of permutation

codes arising from groups acting on a set.

Lemma 3.2.1. Suppose a group G acts on a finite set Ω, where |Ω| = n. Let

Ωg := {ω ∈ Ω | gω = ω}. If |Ωg| ≤ t for all g ∈ G, g 6= 1, then there exists a

(n, |G|, n− t)-code.

Proof. This is clear. |Ωg| ≤ t means that g ∈ G, g 6= 1 fixes at most t elements, and

so the Hamming distance is at least n− t.
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3.2.1 AGLn(Fq)

Recall that the affine general linear group as mentioned in Section 1.1, AGLn(Fq) =

Fnq oGLn(Fq), acts on Fq in the following manner:

(A, b) : Fnq → Fnq

u 7→ Au+ b

where (A, b) ∈ AGLn(Fq).

Theorem 3.2.2. Let n ≥ 1 be an integer and q be a prime power. Then there exists

a
(
qn, qn

∏n−1
i=0 (qn − qi), qn − qn−1

)
-code.

Proof. To apply Lemma 3.2.1, we consider |{u ∈ Fnq | Au + b = u}| for (A, b) ∈

AGLn(Fq), (A, b) 6= (I, 0). Given such (A, b), we want to find the number of u’s that

will satisfy (A − I)u = −b. Since A 6= I, we must have rank(A − I) ≥ 1, and thus

nullity(A − I) ≤ n − 1, which then gives us |{u ∈ Fnq | Au + b = u}| ≤ qn−1. Since

|Fnq | = qn and |AGLn(Fq)| = qn
∏n−1
i=0 (qn − qi), we can then apply Lemma 3.2.1 to

get a
(
qn, qn

∏n−1
i=0 (qn − qi), qn − qn−1)-code.

3.2.2 PGLn(Fq)

Recall that we have defined the projective general linear group in Section 1.1, and

it is PGLn(Fq) = GLn(Fq)/Z(GLn(Fq)), where Z(GLn(Fq)) = {λIn | λ ∈ F∗q}. The

projective general linear group acts on Pn−1q in the following manner

A : Pn−1q → Pn−1q

u 7→ Au

where A ∈ PGLn(Fq).

Lemma 3.2.3. Suppose r = min{rank(λA− I) | λ ∈ F∗q} = rank(λ0A− I) for some

λ0, where A, I ∈ GLn(Fq) and A 6= kI, for k ∈ F∗q. Then ∀λ 6= λ0, we have that

rank(λA− I) ≥ n− r.

Proof. Recall that from linear algebra, we have rank(A−B) ≤ rank(A)+rank(−B) =
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rank(A) + rank(B). Thus we have the following result:

rank(λ0A− I − (λA− I)) ≤ rank(λ0A− I) + rank(λA− I)

rank(λ0A− λA) ≤ rank(λ0A− I) + rank(λA− I)

n ≤ r + rank(λA− I)

rank(λA− I) ≥ n− r

Theorem 3.2.4. Let n ≥ 1 be an integer and q be a prime power. Then there exists

a
( qn−1
q−1 ,

1
q−1

∏n−1
i=0 (qn − qi), qn−1 − q + 2

)
-code.

Proof. To apply Lemma 3.2.1, we want to find a t such that |Pn−1q
A| = |{u ∈ Pn−1q |

Au = u}| ≤ t for all A ∈ PGLn(Fq) that is not the identity. To find u that satisfies

Au = u, we consider λA′u = u, with A′ ∈ GLn(Fq) corresponding to A ∈ PGLn(Fq),

and λ ∈ F∗q .

We let r = min{rank(λA′ − I) | λ ∈ F∗q} = rank(λ0A
′ − I) for some λ0, where

A′, I ∈ GLn(Fq) and A′ 6= kI for k ∈ F∗q . Then from Lemma 3.2.3, ∀λ 6= λ0,

rank(λA′ − I) ≥ n− r, and thus nullity(λ0A
′ − I) ≤ n− r and nullity(λA′ − I) ≤ r.

Hence, the number of u that satisfies λA′u = u is at most (qn−r−1)+(q−2)(qr−1),

and consequently, the number of u that satisfies Au = u is at most (qn−r−1)
q−1 +

(q−2)(qr−1)
q−1 ≤ qn−1−1

q−1 + q − 2.

From Lemma 3.2.1, we know that the length of the code is |Pn−1q | = qn−1
q−1 and

the size is |PGLn(Fq)| = 1
q−1

∏n−1
i=0 (qn − qi). Furthermore, the distance is qn−1

q−1 −

( q
n−1−1
q−1 + q − 2) = qn−1 − q + 2.

Hence, we obtain a
( qn−1
q−1 ,

1
q−1

∏n−1
i=0 (qn − qi), qn−1 − q + 2

)
-code.
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Chapter 4

Conclusion and further study

In this thesis, we have covered as much as possible, the elementary results of permu-

tation codes, as well as some (hopefully interesting) algebraic constructions, along-

side a combinatorial one. We briefly summarize the results below.

From the known constructions, for n prime power, we have these results:

(i) M(n, n− 1) = n(n− 1) from MOLS(n),

(ii) M(n, n− pk∗) ≥ kn(n− 1) from AΓL1(Fn), and

(iii) M(n+ 1, n− pk∗) ≥ k(n+ 1)n(n− 1) from PΓL2(Fn).

From the new constructions, we have these results:

(i) M(n, φ(n)) ≥ φ(n) · n for n prime power,

(ii) M(n, φ(n) + 1) ≥ φ(n) · n for n not prime power,

(iii) M(qn, qn − qn−1) ≥ qn
∏n−1
i=0 (qn − qi), and

(iv) M( q
n−1
q−1 , q

n−1 − q + 2) ≥ 1
q−1

∏n−1
i=0 (qn − qi) where q is prime power.

As the area of permutation codes is still relatively new compared to classical binary

codes, the existing literature of the former is not as rich as the latter. Hence, there

are gaps to fill and areas to work on, and its applications serve as a motivation for

research in this direction.

Regarding possible topics for future research, one can work on finding better

constructions of codes, in particular algebraic ones, as the algebraic constructions
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available are limited. As one may have observed, the algebraic constructions in this

paper tend to have the restriction of n to be a prime power, as that is necessary to

have a finite field. Hence we can either improve on these results, or work on finding

results for n that is not a prime power.

Moving away from the direction we have taken in this thesis, one can also try

to apply algebraic constructions to other metrics, such as the Kendall tau or Ulam

metric. Another area of interest is constant composition codes, which are codes

where each symbol can be repeated more than once in each codeword, but they

have to appear the same number of times for every codeword. Permutation codes

are a special case of constant composition codes, where each symbol occurs only

once. A good introduction to constant composition codes can be found in [6].



Bibliography

[1] S. Bereg, A. Levy, I. H. Sudborough, “Constructing permutation arrays from

groups,” Design, Codes and Cryptography pp. 1-17, 2017.

[2] Y. M. Chee and V. K. Vu, “Breakpoint analysis and permutation codes in

generalized Kendall tau and Cayley metrics,” IEEE International Symposium

on Information Theory, pp. 2959-2963, 2014.

[3] C. J. Colbourn, T. Klove and A. C. H. Ling, “Permutation arrays for powerline

communication and mutually orthogonal latin squares,” IEEE Transactions on

Information Theory, vol. 50, no. 6, pp. 1289-1291, Jun. 2004.

[4] D. A. Cox, “Galois Theory”, Wiley’s Pure and Applied Mathematics, 2004.

[5] W. Chu, C. J. Colbourn, and P. Dukes. “Constructions for permutation codes

in powerline communications,” Designs, Codes and Cryptography, vol. 32, pp.

51–64, 2004.

[6] W. Chu, C. J. Colbourn, and P. Dukes. “On constant composition codes,”

Discrete Applied Mathematics, vol. 154, no. 6, pp. 912-929, 2006.

[7] P. Das, “The number of permutation polynomials of a given degree over a finite

field,” Finite Fields and Their Applications, vol. 8, no. 4, pp. 478-490, 2002.

[8] E. En Gad, E. Yaakobi, A. A. Jiang and J. Bruck, “Rank-modulation rewrite

coding for flash memories,” in IEEE Transactions on Information Theory, vol.

61, no. 8, pp. 4209-4226, Aug. 2015.

33



34 BIBLIOGRAPHY

[9] F. Gao, Y. Yang and G. Ge, “An improvement on the Gilbert–Varshamov

bound for permutation codes,” in IEEE Transactions on Information Theory,

vol. 59, no. 5, pp. 3059-3063, May 2013.

[10] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for

flash memories,” IEEE Transactions on Information Theory, vol. 55, no. 6, pp.

2659–2673, Jun. 2009.

[11] A. Jiang, M. Schwartz, J. Bruck, “Error-correcting codes for rank modulation,”

in IEEE International Symposium on Information Theory, pp. 1736-1740, 2008.

[12] K. Y. Kim, R. Kim and J. S. Kim, “On the number of permutation polynomials

over a finite field,” International Journal of Number Theory 2016, vol. 12, no.

6, pp. 1519-1528, 2016.

[13] T. Klove, T. T. Lin, S. C. Tsai and W. G. Tzeng, “Permutation arrays under

the chebyshev distance,” in IEEE Transactions on Information Theory, vol. 56,

no. 6, pp. 2611-2617, Jun. 2010.

[14] C. F. Laywine, and G. L. Mullen, “Discrete Mathematics Using Latin Squares”,

Wiley-Interscience Series in Discrete Mathematics and Optimization, no. 49,

1998.

[15] R. Lidl, G. L. Mullen, “When does a polynomial over a finite field permute the

elements of the field?,” Amer. Math. Monthly, vol. 95, no. 3, pp. 243-246, Mar

1988.

[16] S. Ling, C. Xing, “Coding Theory: A First Course”, Cambridge University

Press, 2004.


